
The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

A Multiagent Platform for Developments of
Accounting Intelligent Applications

Adrian LUPAŞC

alupasc@ugal.ro
University "Dunărea de Jos" of Galaţi

Abstract. AOP – Agent Oriented Programming – is a new software paradigm that
brings many concepts from the artificial intelligence. This paper provides a short
overview of the JADE software platform and the principal’s components
constituting its distributed architecture. Furthermore, it describes how to launch the
platform with the command–line options and how to experiment with the main
graphical tools of this platform.

Keywords: JADE, multiagent system, container, message, communication,
accounting.

1. Introduction

Agent and multiagent technology has been the subject of many discussions within the scientific
community, but it is maybe only recent that it has seen significant degree of exploitation in
many types of application, including accounting application.

The initial software developments, that later became the JADE (Java Agent Development
Framework) platform, were started by Telecom Italia in 1998, motivated by the need to validate
the FIPA specifications. JADE went open source in 2000. JADE has a website1 from where the
software, documentation, example code, and a wealth of information about usages of JADE
are available. The project welcomes the participation of the open source community with a
variety of means to become involved and contribute to the project. In order to facilitate
industrial involvement, in 2003 was defined a collaboration agreement and formed the JADE
Governing Board, a not–for–profit organization of companies committed to contributing to the
development and promotion of this platform. The Board was forms into contractual consortium
with well–defined rules specifying the rights and obligations toward generated IPR. The Board
is open with members able to join and leave according to their needs.

When JADE was became public, it was used almost exclusively by the FIPA community but as
its feature set grew far beyond the FIPA specifications, so did its use by a globally distributed
developer community. It is important to note that this platform contributed to wide diffusion of
the FIPA specifications by providing a set of tools and software abstractions that hid the
specifications themselves; programmers could essentially implement according to the
specifications without the need to study them.

2. The agent’s paradigm and JADE

JADE is a platform that provides basic middleware–layer functionalities which are independent of
the specific application and which simplify the realization of distributed applications that
exploit the software agent abstraction. An important merit of JADE is that it implements this
abstraction over a well–known object–oriented language, Java: providing a simple and friendly

1 http://jade.tilab.com

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

API (Application Programming Interface). The following simple design choices were influenced
by the agent abstraction.

 Any agent must be proactive and autonomous – an agent can not provide call–backs or its
own object reference to other agents in order to decrease any chance of other entities co–opting
control of its services. An agent must have its own thread of execution, using it to control its
life cycle and decide autonomously when to perform and which actions.

 Any agents can always say 'Yes' or ‘No’, and they are loosely coupled – message–based
asynchronous communication is the main form of communication between different agents in
JADE; an agent wishing to communicate must send messages to an identified destination (or more
destinations). There is no temporal dependency between the receiver and sender: a receiver might
not be disposable when the sender issues the message. There is also no need to have the object
reference of receiver agents but just, name identities that the message transport system is able to
resolve into proper transport addresses. It is even possible that a precise receiver identity be
unknown to the sender, which instead may define a receiver set using an intentional grouping
(all the agents that provide the “Accounting information retrieving” service) or mediated by a
proxy agent (propagate this message to all agents in a domain).

This type of communication enables the receiver to select which messages to process; and
which to discard, as well as to define its own processing priority (read all message, coming
from a domain "accounting.com"). It enables the sender to control its thread of execution and
thus not be blocked until the receiver processes the message. Also, it provides an important
advantage when implementing multi–cast communication as an atomic operation rather than as
a consecutive method calls.

 The system is Peer–to–Peer: each agent is identified by a unique name (AID–Agent
Identifier, as defined by FIPA specifications). It can join and leave a host platform anytime
and can discover other agents through both yellow–page services (provided in JADE by AMS
(Agent Management System) and the DF (Directory Facilitator) agents as defined by the
FIPA). An agent can start a communication with other agent at anytime it wishes and can
equally be the object of an incoming communication at any time.

 A distributed system inhabited by agents, each running as a separate thread, potentially on

different remote machines, and capable of transparently communicating with one another,
i.e. the platform provides a unique location–independent API that abstracts the underlying
communication infrastructure.

 Compliance with the FIPA specifications – the platform successfully participated in all
FIPA interoperability events and was used as the middleware for many platforms in the
Agentcities network (Agentcities). A great facilitator of this was active contribution by
the JADE team to the FIPA standardization process.

 Transport of asynchronous messages via a location–transparent API. The platform selects the
best available means of communication and, when possible, avoids
marshalling/unmarshalling Java objects. When crossing platform boundaries, messages
are automatically transformed from JADE's own internal Java representation into proper
FIPA–compliant syntaxes, encodings and transport protocols.

 Implementations of yellow page services. Federated systems can be implemented to
represent domains and sub-domains as a graph of federated directories.

 A simple agent life–cycle management – when agents are created they are automatically
assigned a globally unique identifier and a transport address which are used to register
with their platform's white page service. Simple APIs and graphical tools are also
provided to both locally and remotely manage agent life cycles, i.e. create, suspend,

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

resume, freeze, thaw, migrate, clone and kill.
 Support for agent mobility – agent code and agent state can migrate between processes and

machines. Agent migration is made transparent to communicating agents that can
continue to interact even during the migration process.

 A subscription mechanism for agents, and even external applications, that wish to
subscribe with a platform to be notified of all platform events, including life–cycle–
related events and message exchange events,

 A set of graphical tools to support programmers when debugging and monitoring. These
are particularly important and complex in multi–threaded, multi–process, multi–machine
systems such as a typical JADE application. Conversations can be sniffed and
emulated, and agent execution can be controlled remotely and introspected, including
remote step-by-step debugging of agent execution.

 Support for ontologies or content languages. Ontology checking and content encoding is
per formed automatically by the platform with programmers able to select preferred
content languages and ontologies (XML and RDF–based). Developers can also
implement new content languages to performance specific application requirements.

 A library of interaction protocols which model typical models of communication oriented
toward fulfills any goal. Application–independent skeletons are available as a set of
Java classes that can he customized with application-specific code. Interaction Protocols
can also be represented and implemented as a set of concurrent finite state machines
integration with various web–based technologies including JSP, servlets, applets and Web
service technology.

 An in–process interface for launching a platform and its distributed components from an
external application.

 An extensible kernel designed to allow developers to extend platform functionality
through the addition of kernel–level distributed services. This mechanism is inspired by
the aspect–oriented programming approach where different aspects can be woven into
application code and coordinated at kernel level.

JADE architecture
Figure 1 shows the main architectural elements of a JADE platform. A JADE platform is com-
posed of agent containers that can be distributed over the network. Agents are in containers
which are the Java process that provides the JADE run–time and all the services needed for
hosting and executing agents. There is a special container, called the main container, which
represents the bootstrap point of a platform: it is the initial container to be launched and all
other containers must join to this container by registering with it. The UML (Unified
Modeling Language) diagram in figure 2 summary shows the relations between the important
architectural elements of JADE platform.

The developer identifies containers by simply using a logical name; by default the main
container is named “Main Container” while the others are named “Container–1”, “Container–
2”, etc. Command–line options are available to override this default names.
As a initial point, the main container has the following special responsibilities:

 Managing the container table (CT), which is the registry of the object references and
transport addresses of all container nodes composing the platform;

 Managing the global agent descriptor table (GADT). which is the registry of all agents
present in the platform, including their current status and location;

 Hosting the AMS and the DF, the special agents that provide the agent management
and white page service, and the default yellow page service of the platform.

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

LADT

Container 1
memorie
GADT

IMTP

DF
agenti

JAVA JAVA JAVA

agenti
agenti

AMS

PLATFORMA

MTP

A
lte

 p
la

tfo
rm

e
FI

PAIMTP
LADT LADT

GADT CT

Container principal Container 2
memorie
GADT

Figure 1. The main architectural elements of JADE platform

Platforma Agent

Container Agent

Container Principal

1..*

1

este compusa din

1

0..*

se gaseste in

1

1..*

in
re

gi
st

ra
t c

u

Figure 2. Relationship between the main architectural elements

A common query is whether the main–container is a system bottleneck. In fact this is not the
case as JADE provides a cache of the GADT that each container manages locally. Platform
operations do not always involve the main–container, but instead just the local cache and the
two containers hosting the agents which arc the subject and the object of the operation
(receiver and sender of the message). When a container must discover where the recipient of
a message lives, it first searches its LADT (local agent descriptor table) and then, when the
search fails, is the main–container contacted in order to obtain the proper remote reference
which, consequently, is cached locally for future use. Because the system is dynamic, the
system may use a stale cached value resulting in an invalid address. In this case, the
container receives an exception and is forced to refresh its cache against the main–container.
The cache replacement policy is LRU (least recently used), which was designed to optimize

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

long conversations rather than sporadic, single message exchange conversations which are
actually fairly uncommon in multi–agent applications.

Agent identity is contained within an Agent Identifier (AID), composed of a set of slots that
comply with the structure and semantics defined by FIPA. The most basic elements of the
AID arc the agent name and its addresses. The name of an agent is a globally unique
identifier that JADE constructs by concatenating a user–defined nickname (also known as a local
name as it is sufficient for disambiguating intra–platform communication) to the platform name.
The agent addresses are transport addresses inherited by the platform, where each platform address
corresponds to an MTP (Message Transport Protocol) end point where FTPA–compliant messages
can be sent and received. Agent programmers are also allowed to add their own transport
addresses to the AID when, for any application-specific purpose, they wish to implement their
own agent private MTP.

When the main–container is launched, two special agents are automatically instantiated and
started by JADE, whose roles are defined by the F1PA Agent Management standard:

 The Agent Management System (AMS) is the agent that supervises the entire platform. It
is the contact point for all agents that need to interact in order to access the white pages of
the platform as well as to manage their life cycle. Every agent is required to register with the
AMS (automatically carried out by JADE at agent start–up) in order to obtain a valid
AID.

 The Directory Facilitator (DF) is the agent that implements the yellow pages service, used
by any agent wishing to register its services or search for other available services. The
JADE DF also accepts subscriptions from agents that wish to be notified whenever a service
registration or modification is made that match some specified criteria. Multiple DFs can be
started con currently in order to distribute the yellow pages service across several domains.
These DFs can be federated, if required, by establishing cross–registrations with one another
which allow the propagation of agent requests across the entire federation.

Compiling the software and launching the platform
JADE–related software is divided into two sections: the main distribution and the add–ons. The add-
–ons in particular include self–contained modules that implement specific extended features such
as codec’s for given languages. In many cases these have not been developed by the JADE
team directly, but by members of the open source community who decided to return their
achievements to the community itself.

The main distribution is composed of five primary archive files with the following content:

 jadeBin.zip – contains only the pre–compiled JADE Java archive (.jar) files in a ready to
use state.

 jadeDoc.zip – contains the documentation, including the Administrator and Programmer
guides. This documentation is also available online from the website.

 jadeExamples.zip – contains the source code of various examples.
 jadeSrc.zip – contains all the sources of JADE.
 jadeAll.zip – contains all of the four files listed above.

If the above zip files are downloaded and unzipped, the directory structure should be as shown
in Figure 3 (only the most relevant files and directories are actually shown). Some of the
important files/folders include:

 License, the open source license that regulates all use of the software.
 The file jade/doc/index-html is a good starting point for beginners containing links

to a variety of thematic tutorials, the Programmer and Administrator guide, javadoc
documentation of all the sources, plus several other support documents.

 The jade/lib folder contains all the *.jar files which must be included in the Java
CLASSPATH in order to run JADE. It includes the lib/commons-codec subdirectory
where an external Base64 codec is distributed that should also be included in the Java
CLASSPATH.

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

Figure 3. JADE directory structure

 The jade/src directory contains four subdirectories. Demo contains the sources of a

simple demo. Examples contain several useful source code examples of various agent
fragments. FIPA contains the sources of a FIPA–defined module. Jade contains all the
sources of JADE itself.

The JADE sources can he compiled using the ant tool (ANT). The most important ant
targets are the following:

 jade – to compile the sources and create the. class files under the classes
subdirectory;

 lib – to generate the Java archive jar files under the lib subdirectory;
 doc – to generate the javadoc documentation files under the doc subdirectory;
 examples – to compile all the examples.

Experienced users might find it useful to directly access the source code repository for which
read–only access is available to the JADE community. The repository is maintained and kept
up to date by an administrator; instructions on how to access it arc available on the JADE
website. The lib directory contains the five archive files containing the classes needed by
JADE:

 jade.jar contains all the JADE packages except add–ons, MTPs and graphical tools;
 jadeTools.jar contains all the graphical tools;
 http.jar contains the HTTP–based MTP which is also the default MTP launched

at the platform start-up;
 iiop.jar contains the IIOP–based MTP. This is not often used, but is the subject of a

couple of examples later in the book and it implements the FIPA HOP MTP specs
(FIPA75);

 commons–codec\commons-codec-1.3.jar contains the Base64 codec used by JADE.

The classes directory contains the class files of the examples. Note that to reduce the
size of the distribution files, the examples arc distributed as source code and must therefore
be compiled prior to use with the command ant examples. To launch the platform, the
user must first set their local Java CLASSPATH, i.e. the set of directories and Java archive
files where the Java Virtual Machine will took for byte code (i.e. the .class and .jar files).
Issues relating to the CLASSPATH remain the topic of many questions received from
JADE beginners, with the most typical concerning classNotFound exceptions caused by
incorrect configuration of the CLASSPATH parameter.

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

The main-container can be launched with the JADE GUI using the command: java jade.Boot –
gui. The result of this should be as shown in Figure 4.

Figure 4. Standard output at the JADE start–up

The first part of this output is the disclaimer printed out each time a JADE run–time is started.
Following that, all the standard JADE platform services are initialized, which implement the
various functionalities provided by the container. Since this instance of the JADE run–time is a
main container, an HTTP MTP is started by default and its local address printed. Finally, a
notification indicates that a container called “main container” is ready; the JADE platform is now
ready for use. As mentioned, the command–line option -gui has the effect of launching the
primary JADE graphical interface, shown in figure 5. This GUI is actually provided by a JADE
system agent called the Remote Monitoring Agent (RMA) and allows a platform administrator to
manipulate and monitor the running platform. It should be noted that use of the RMA GUI, and
all other graphical tools, can negatively impact system performance. This is one reason why
the -gui option is provided. If performance is a concern, it is suggested not to use the RMA
GUI at deployment time, rather to limit its use to system monitoring as required.

Figure 5. GUI of the JADE RMA

The Annals of “Dunarea de Jos” University of Galati
Fascicle I – 2008. Economics and Applied Informatics. Years XIV - ISSN 1584-0409

Now that the main-container has been initialized, any number of other containers can be
launched on the various hosts composing the platform.

Conclusion

Agent Oriented Programming models applications as a collection of components – agents that
are characterized by autonomy, proactivity, and ability to communicate. In this paper I made a
short overview of JADE, maybe the most wide agent oriented middleware in use in our days.
This platform is a completely distributed middleware system with a flexible infrastructure that
allows extension with add–ons modules. JADE facilitates the development of complete agent–
based applications and because it is written in Java language, it benefits from the huge set of
programming abstractions allowing constructing JADE multiagent systems with minimal
expertise in multiagent theory.

References

1. Andone, I., Sisteme inteligente hibride. Teorie, studii de caz pentru aplicaţii economice şi ghidul

dezvoltatorului, Editura Economică, Bucureşti, 2002.
2. Bellifemine, F., Caire, G., Greenwood, D., Developing multiagent systems with JADE, Wiley & Sons,

Ltd., 2007.
3. Bordini, R.H., Hubner, J.F., Vieira., R., Jasonand the Golden Fleece of Agent-oriented Programming, In

Bordini, R., Dastani, M., Dix, J., Seghrouchni, A., (eds), Multiagent Programming, Kluwer, 2005.
4. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J., Leite, J., O’Hare, G.,

Pokahr, A., Ricci, A., A Survey of Programming Languages and Platforms for Multiagent Systems,
Informatica, 30(1), p. 33-44, 2006;

5. Negri, A., Poggi, A., Tomaiuolo, M., Turci, P., Dynamic Grid Tasks Composition and Distribution
through Agents, Concurrency and Computation: Practice and Experience, 18(8), p. 875-885, 2006.

6. Wooldridge, M., An introduction to multiagent systems, John Wiley&Sons, LTD, August, 2002.
7. http://jade.tilab.com.

